QuantLib 金融计算——数学工具之求解器
介绍 QuantLib 中的数学工具。
由于版本问题,代码可能与最新版不兼容。
QuantLib 金融计算——数学工具之求解器
载入模块
1
2
3
4
5
import QuantLib as ql
import scipy
from scipy.stats import norm
print(ql.__version__)
1
1.12
概述
QuantLib 提供了多种类型的一维求解器,用以求解单参数函数的根,
\[f(x)=0\]其中 $f : R \to R$ 是实数域上的函数。
QuantLib 提供的求解器类型有:
Brent
Bisection
Secant
Ridder
Newton
(要求提供成员函数derivative
,计算导数)FalsePosition
这些求解器的构造函数均为默认构造函数,不接受参数。例如,Brent
求解器实例的构造语句为 mySolv = Brent()
。
调用方式
求解器的成员函数 solve
有两种调用方式:
1
2
3
4
5
6
7
8
9
10
solve(f,
accuracy,
guess,
step)
solve(f,
accuracy,
guess,
xMin,
xMax)
f
:单参数函数或函数对象,返回值为一个浮点数。accuracy
:浮点数,表示求解精度 $\epsilon$,用于停止计算。假设 $x_i$ 是根的准确解,- 当 $\vert f(x) \vert < \epsilon$;
- 或 $\vert x - x_i \vert < \epsilon$ 时停止计算。
guess
:浮点数,对根的初始猜测值。step
:浮点数,在第一种调用方式中,没有限定根的区间范围,算法需要自己搜索,确定一个范围。step
规定了搜索算法的步长。xMin
、xMax
:浮点数,左右区间范围
根求解器在量化金融中最经典的应用是求解隐含波动率。给定期权价格 $p$ 以及其他参数 $S_0$、$K$、$r_d$、$r_f$、$\tau$,我们要计算波动率 $\sigma$,满足
\[f(\sigma) = \mathrm{blackScholesPrice}(S_0 , K, r_d , r_f , \sigma , \tau, \phi) - p = 0\]其中 Black-Scholes 函数中 $\phi = 1$ 代表看涨期权;$\phi = −1$ 代表看跌期权。
非 Newton 算法(不需要导数)
下面的例子显示了如何加一个多参数函数包装为一个单参数函数,并使用 QuantLib 求解器计算隐含波动率。
例子 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Black-Scholes 函数
def blackScholesPrice(spot,
strike,
rd,
rf,
vol,
tau,
phi):
domDf = scipy.exp(-rd * tau)
forDf = scipy.exp(-rf * tau)
fwd = spot * forDf / domDf
stdDev = vol * scipy.sqrt(tau)
dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev
dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev
res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm))
return res
# 包装函数
def impliedVolProblem(spot,
strike,
rd,
rf,
tau,
phi,
price):
def inner_func(v):
return blackScholesPrice(spot, strike, rd, rf, v, tau, phi) - price
return inner_func
def testSolver1():
# setup of market parameters
spot = 100.0
strike = 110.0
rd = 0.002
rf = 0.01
tau = 0.5
phi = 1
vol = 0.1423
# calculate corresponding Black Scholes price
price = blackScholesPrice(spot, strike, rd, rf, vol, tau, phi)
# setup a solver
mySolv1 = ql.Bisection()
mySolv2 = ql.Brent()
mySolv3 = ql.Ridder()
accuracy = 0.00001
guess = 0.25
min = 0.0
max = 1.0
myVolFunc = impliedVolProblem(spot, strike, rd, rf, tau, phi, price)
res1 = mySolv1.solve(myVolFunc, accuracy, guess, min, max)
res2 = mySolv2.solve(myVolFunc, accuracy, guess, min, max)
res3 = mySolv3.solve(myVolFunc, accuracy, guess, min, max)
print('{0:<35}{1}'.format('Input Volatility:', vol))
print('{0:<35}{1}'.format('Implied Volatility Bisection:', res1))
print('{0:<35}{1}'.format('Implied Volatility Brent:', res2))
print('{0:<35}{1}'.format('Implied Volatility Ridder:', res3))
testSolver1()
1
2
3
4
# Input Volatility: 0.1423
# Implied Volatility Bisection: 0.14229583740234375
# Implied Volatility Brent: 0.14230199334812577
# Implied Volatility Ridder: 0.1422999996313447
Newton 算法(需要导数)
Newton 算法要求为根求解器提供 $f(\sigma)$ 的导数 $\frac{\partial f}{\partial \sigma}$(即 vega)。下面的例子显示了如何将导数添加进求解隐含波动率的过程。为此我们需要一个类,一方面提供作为一个函数对象,另一方面要提供成员函数 derivative
。
例子 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
class BlackScholesClass:
def __init__(self,
spot,
strike,
rd,
rf,
tau,
phi,
price):
self.spot_ = spot
self.strike_ = strike
self.rd_ = rd
self.rf_ = rf
self.phi_ = phi
self.tau_ = tau
self.price_ = price
self.sqrtTau_ = scipy.sqrt(tau)
self.d_ = norm
self.domDf_ = scipy.exp(-self.rd_ * self.tau_)
self.forDf_ = scipy.exp(-self.rf_ * self.tau_)
self.fwd_ = self.spot_ * self.forDf_ / self.domDf_
self.logFwd_ = scipy.log(self.fwd_ / self.strike_)
def blackScholesPrice(self,
spot,
strike,
rd,
rf,
vol,
tau,
phi):
domDf = scipy.exp(-rd * tau)
forDf = scipy.exp(-rf * tau)
fwd = spot * forDf / domDf
stdDev = vol * scipy.sqrt(tau)
dp = (scipy.log(fwd / strike) + 0.5 * stdDev * stdDev) / stdDev
dm = (scipy.log(fwd / strike) - 0.5 * stdDev * stdDev) / stdDev
res = phi * domDf * (fwd * norm.cdf(phi * dp) - strike * norm.cdf(phi * dm))
return res
def impliedVolProblem(self,
spot,
strike,
rd,
rf,
vol,
tau,
phi,
price):
return self.blackScholesPrice(
spot, strike, rd, rf, vol, tau, phi) - price
def __call__(self,
x):
return self.impliedVolProblem(
self.spot_, self.strike_, self.rd_, self.rf_,
x,
self.tau_, self.phi_, self.price_)
def derivative(self,
x):
# vega
stdDev = x * self.sqrtTau_
dp = (self.logFwd_ + 0.5 * stdDev * stdDev) / stdDev
return self.spot_ * self.forDf_ * self.d_.pdf(dp) * self.sqrtTau_
def testSolver2():
# setup of market parameters
spot = 100.0
strike = 110.0
rd = 0.002
rf = 0.01
tau = 0.5
phi = 1
vol = 0.1423
# calculate corresponding Black Scholes price
price = blackScholesPrice(
spot, strike, rd, rf, vol, tau, phi)
solvProblem = BlackScholesClass(
spot, strike, rd, rf, tau, phi, price)
mySolv = ql.Newton()
accuracy = 0.00001
guess = 0.10
step = 0.001
res = mySolv.solve(
solvProblem, accuracy, guess, step)
print('{0:<20}{1}'.format('Input Volatility:', vol))
print('{0:<20}{1}'.format('Implied Volatility:', res))
testSolver2()
1
2
# Input Volatility: 0.1423
# Implied Volatility: 0.14230000000000048
导数的使用明显提高了精度。
本文由作者按照 CC BY 4.0 进行授权