文章

QuantLib 金融计算——自己动手封装 Python 接口(2)

介绍如何为 QuantLib 封装 Python 接口。

由于版本问题,代码可能与最新版不兼容。

QuantLib 金融计算——自己动手封装 Python 接口(2)

概述

对于一项简单功能,通常只需要包装少数几个类就可以,正如《自己动手封装 Python 接口(1)》演示的那样。

下面,将演示如何包装 QuantLib 中的复杂功能,最终实现从固息债交易数据中估计期限结构模型的参数

如何封装一项复杂功能?

经过一翻摸索后发现,要封装一项复杂功能,首先要找到最小功能集合,即这项功能直接或间接涉及的类和函数有哪些。然后,找到最小功能集合后再对涉及到的类或函数分别编写接口文件。最后,按照常规流程生成包装好的 Python 接口。

对于简单功能来说最小功能集合可能就是一两个类或函数。而对于复杂功能来说,寻找最小功能集合是一个递归的过程(A 用到 B,B 用到 C,…),最终可能找到很多类或函数需要包装。

寻找最小功能集合的策略

寻找最小功能集合有一些经验性的方法,以“从固息债交易数据中估计期限结构模型的参数”这项功能为例:

  1. 找到核心功能类,即 FittedBondDiscountCurve,最小功能集合要包含这个类、它的基类以及基类的基类,等等;
  2. 找到构造 FittedBondDiscountCurve 对象时涉及到一系列的类,例如 CalendarFittingMethod 等,这些类、它们的基类以及基类的基类也要包含在最小功能集合中;
  3. 找到 FittedBondDiscountCurve 成员函数涉及到一系列的类,这些类、它们的基类以及基类的基类也要包含在最小功能集合中;
  4. 把第 2 和第 3 步递归地进行下去,直到最小功能集合中的类和函数不再增加。

需要注意的是,到现在为止最小功能集合中出现的类有的可以发挥实际作用,例如 Date;而有的只是充当接口的基类,例如 FittingMethod,对于这些情况,要把它们能够发挥实际作用的派生类包含进最小功能集合。

实践

QuantLib-SWIG 从 1.16 开始修改了智能指针的包装方式,为了和最新版本保持一致,这里以 QuantLib 1.17 的 SWIG 接口文件为基础做适当修改,删去一些冗余代码,用以包装 QuantLib 1.15 的接口。

官方发布的接口文件中 FittingMethod 的构造函数不能接受 OptimizationMethod 对象,也不能进行 $L^2$ 正则化约束。在本次自定义的接口文件中扩展了构造函数的接口,克服上述局限。

接口文件请见 QuantLibEx-SWIG

估计期限结构参数

《利率曲线之构建曲线(5)》中的 C++ 代码翻译成 Python,验证封装后的接口是否可用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import QuantLibEx as qlx

print(qlx.__version__)

bondNum = 16

cleanPrice = [100.4941, 103.5572, 104.4135, 105.0056, 99.8335, 101.25, 102.3832, 97.0053,
              99.5164, 101.2435, 104.0539, 101.15, 96.1395, 91.1123, 122.0027, 92.4369]
priceHandle = [qlx.QuoteHandle(qlx.SimpleQuote(p)) for p in cleanPrice]
issueYear = [1999, 1999, 2001, 2002, 2003, 1999, 2004, 2005,
             2006, 2007, 2003, 2008, 2005, 2006, 1997, 2007]
issueMonth = [qlx.February, qlx.October, qlx.January, qlx.January, qlx.May, qlx.January, qlx.January, qlx.April,
              qlx.April, qlx.September, qlx.January, qlx.January, qlx.January, qlx.January, qlx.July, qlx.January]
issueDay = [22, 22, 4, 9, 20, 15, 15, 26, 21, 17, 15, 8, 14, 11, 10, 12]

maturityYear = [2009, 2010, 2011, 2012, 2013, 2014, 2014, 2015,
                2016, 2017, 2018, 2019, 2020, 2021, 2027, 2037]

maturityMonth = [qlx.July, qlx.January, qlx.January, qlx.July, qlx.October, qlx.January, qlx.July, qlx.July,
                 qlx.September, qlx.September, qlx.January, qlx.March, qlx.July, qlx.September, qlx.July, qlx.March]

maturityDay = [15, 15, 4, 15, 20, 15, 15, 15,
               15, 15, 15, 15, 15, 15, 15, 15]

issueDate = []
maturityDate = []
for i in range(bondNum):
    issueDate.append(
        qlx.Date(issueDay[i], issueMonth[i], issueYear[i]))
    maturityDate.append(
        qlx.Date(maturityDay[i], maturityMonth[i], maturityYear[i]))

couponRate = [
    0.04, 0.055, 0.0525, 0.05, 0.038, 0.04125, 0.043, 0.035,
    0.04, 0.043, 0.0465, 0.0435, 0.039, 0.035, 0.0625, 0.0415]

# 配置 helper

frequency = qlx.Annual
dayCounter = qlx.Actual365Fixed(qlx.Actual365Fixed.Standard)
paymentConv = qlx.Unadjusted
terminationDateConv = qlx.Unadjusted
convention = qlx.Unadjusted
redemption = 100.0
faceAmount = 100.0
calendar = qlx.Australia()

today = calendar.adjust(qlx.Date(30, qlx.January, 2008))
qlx.Settings.instance().evaluationDate = today

bondSettlementDays = 0
bondSettlementDate = calendar.advance(
    today,
    qlx.Period(bondSettlementDays, qlx.Days))

instruments = []
maturity = []

for i in range(bondNum):
    bondCoupon = [couponRate[i]]

    schedule = qlx.Schedule(
        issueDate[i],
        maturityDate[i],
        qlx.Period(frequency),
        calendar,
        convention,
        terminationDateConv,
        qlx.DateGeneration.Backward,
        False)

    helper = qlx.FixedRateBondHelper(
        priceHandle[i],
        bondSettlementDays,
        faceAmount,
        schedule,
        bondCoupon,
        dayCounter,
        paymentConv,
        redemption)

    maturity.append(dayCounter.yearFraction(
        bondSettlementDate, helper.maturityDate()))

    instruments.append(helper)

accuracy = 1.0e-6
maxEvaluations = 5000
weights = qlx.Array()

# 正则化条件

l2Ns = qlx.Array(4, 0.5)
guessNs = qlx.Array(4)
guessNs[0] = 4 / 100.0
guessNs[1] = 0.0
guessNs[2] = 0.0
guessNs[3] = 0.5

l2Sv = qlx.Array(6, 0.5)
guessSv = qlx.Array(6)
guessSv[0] = 4 / 100.0
guessSv[1] = 0.0
guessSv[2] = 0.0
guessSv[3] = 0.0
guessSv[4] = 0.2
guessSv[5] = 0.15

optMethod = qlx.LevenbergMarquardt()

# 拟合方法

nsf = qlx.NelsonSiegelFitting(
    weights, optMethod, l2Ns)
svf = qlx.SvenssonFitting(
    weights, optMethod, l2Sv)

tsNelsonSiegel = qlx.FittedBondDiscountCurve(
    bondSettlementDate,
    instruments,
    dayCounter,
    nsf,
    accuracy,
    maxEvaluations,
    guessNs,
    1.0)

tsSvensson = qlx.FittedBondDiscountCurve(
    bondSettlementDate,
    instruments,
    dayCounter,
    svf,
    accuracy,
    maxEvaluations,
    guessSv)

print("NelsonSiegel Results: \t", tsNelsonSiegel.fitResults().solution())
print("Svensson Results: \t\t", tsSvensson.fitResults().solution())
1
2
NelsonSiegel Results: 	[ 0.0500803; -0.0105414; -0.0303842; 0.456529 ]
Svensson Results: 		[ 0.0431095; -0.00716036; -0.0340932; 0.0391339; 0.228995; 0.117208 ]

所得结果和《利率曲线之构建曲线(5)》中的完全一致。

修改官方接口文件

如果已经安装了 1.16 以后的 QuantLib,只要对官方接口文件稍加修改再重新包装 Python 接口,就可以扩展 FittingMethod 的构造函数,使其能接受 OptimizationMethod 对象,并能进行正则化。

NelsonSiegelFitting 为例,需要在 fittedbondcurve.i 文件中用

1
2
3
4
5
6
7
class NelsonSiegelFitting : public FittingMethod {
  public:
    NelsonSiegelFitting(
        const Array& weights = Array(),
        boost::shared_ptr< OptimizationMethod > optimizationMethod = boost::shared_ptr< OptimizationMethod >(),
        const Array &l2 = Array());
};

替换

1
2
3
4
class NelsonSiegelFitting : public FittingMethod {
  public:
    NelsonSiegelFitting(const Array& weights = Array());
};

下一步的计划

  1. 包装 QuantLibEx 中的几个期限结构模型;
  2. scipy 的优化算法引擎要相较于 QuantLib 自身提供的要更丰富,尝试使 FittingMethod 能接受 scipy 的算法。
本文由作者按照 CC BY 4.0 进行授权